

Course Specification

— (Bachelor)

Course Title: Linear Algebra

Course Code: 326 Math-3

Program: BS in Computer and Network Engineering

Department: Computer Science

College: Computer Science and Information Technology

Institution: Jazan University

Version: 2024

Last Revision Date: 9/2024

Table of Contents

A. General information about the course:	3
1. Teaching mode (mark all that apply)	
2. Contact Hours (based on the academic semester)	
C. Course Content	. 5
D. Students Assessment Activities	. 6
1. References and Learning Resources	. 6
2. Required Facilities and equipment	. 7
F. Assessment of Course Quality	7
G. Specification Approval Data	7

A. General information about the course:

1.	1. Course Identification				
1.	Credit hours:	3			
2. (Course type				
A.	University □	College ⊠	Department□	Track□	Others□
В.	Required ⊠	Elective□			
3. Level/year at which this course is offered: Level 6 / Year 3					
4. Course general Description					
Thi	This course is designed to provide students with				

- Vector spaces over a field: Definition, Theorem and Examples of definition of vector space. Linear combinations of vectors and spanning set.
- Subspaces: Definition and examples, related theorem, Sum and direct sum of two subspaces, Intersection of two subspaces.
- Linear independence and linear combination: Definition and examples, Basis and Dimension of vector space, Dimension of vector spaces.
- Spaces related to matrices: Row Space, Column Space, Null Space, Rank and nullity.
- Linear Transformations: Definition and examples, and theorem of definition, Kernel and Range of Linear transformations.
- Eigenvalues and Eigenvectors: Definition and Examples, method of finding eigenvalues and eigenvectors.
- Applications of Linear Algebra: Some applications in computer science such as in computer graphics.

5. Pre-requirements for this course (if any): Math-106

6. Co- requirements for this course (if any): None

7. Course Main Objective(s):

After finishing the course, the student is expected to be familiar with::

- Knowing the basic topics of Linear Algebra such as Matrices, vectors.
- Knowing Spaces, Linear Transformations, Basis and Dimension.
- Knowing how to find Eigenvalues and Eigenvectors.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	45	100%
2.	E-learning		

No	Mode of Instruction	Contact Hours	Percentage
2	Hybrid		
3.	Traditional classroomE-learning		
4.	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	42
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	3
5.	Others (specify)	
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Distinguish mathematical concepts relevant to vector space, subspace, linear combination and span, linear independence, inner product, eigenvalue and eigenvector.	K1	Lectures, Web based work, Classroom Discussion.	Written exam (Problem solve, MCQ, Proof, Short answer), Quizzes, Assignments.
1.2	Identify background science, features and structures of Mathematics problems in vector space, subspace.	K2	Lectures, Web based work, Classroom Discussion.	Written exam (Problem solve, MCQ, Proof, Short answer), Quizzes, Assignments.
1.3	Explain notations and concepts required for the solution of linear combination and span, linear independence, inner product, eigenvalue and eigenvector.	К3	Lectures, Web based work, Classroom Discussion.	Written exam (Problem solve, MCQ, Proof, Short answer), Quizzes, Assignments.
2.0	Skills			

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.1	Apply theoretical, computational or practical aspect relevant to vector space, subspace	S1	Lectures, Web based work, Classroom Discussion.	Written exam (Problem solve, MCQ, Proof, Short answer), Quizzes, Assignments.
2.2	Compute numerical quantities for various parameters to approximate the solution in linear combination and span, linear independence, inner product, eigenvalue and eigenvector.	S 2	Lectures, Web based work, Classroom Discussion.	Written exam (Problem solve, MCQ, Proof, Short answer), Quizzes, Assignments.
2.3	Apply various mathematical rules, techniques and theorems in Application in vector space, subspace.	\$3	Lectures, Web based work, Classroom Discussion.	Written exam (Problem solve, MCQ, Proof, Short answer), Quizzes, Assignments.
2.4	Solve mathematical problem using critical thinking for Linear combination and span, linear independence, inner product, eigenvalue and eigenvector.	S4	Lectures, Web based work, Classroom Discussion.	Written exam (Problem solve, MCQ, Proof, Short answer), Quizzes, Assignments.
3.0	Values, autonomy, and responsibi	lity		
3.1	Cultivate a mathematical attitude and nurture the interest.	V1	Lectures/Pres entations Group Discussion	Assignments Discussion
3.2	Realize the importance of responsibilities through different modes of practice, competition and related activities.	V2	Group work, problem solving, web based work	Assignments, Discussion
3.3	Inculcating values and ethics in thought, expression and deed.	V3	Group work, problem solving, web based work	Assignments, Discussion

C. Course Content

No List of Topics Contact H

1.	Vector spaces over a field : Definition, Theorem and Examples of definition of vector space. Linear combinations of vectors and spanning set.	6
2.	Subspaces : Definition and examples, related theorem, Sum and direct sum of two subspaces, Intersection of two subspaces.	6
3	Linear independence and linear combination : Definition and examples, Basis and Dimension of vector space, Dimension of vector spaces.	9
4	Spaces related to matrices : Row Space, Column Space, Null Space, Rank and nullity.	6
5	Linear Transformations : Definition and examples, and theorem of definition, Kernel and Range of Linear transformations.	6
6	Eigenvalues and Eigenvectors: Definition and Examples, method of finding eigenvalues and eigenvectors.	6
7	Applications of Linear Algebra: Some applications in computer science such as in computer graphics.	6
	Total	45

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Home Assignment and Quiz	3	5%
2.	Mid Exam 1	6	20%
3.	Home Assignment and Quiz	10	5%
4	Mid Exam 2	12	20%
5	Final Exam	15	50%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 - Elementary Linear Algebra, H. Anton, John Wiley (2001). - Elementary Linear Algebra, R. E. Larson and B. E. Edwards, Edition Heath 5th, D.H. and Company, (2004)
Supportive References	 List Essential References Materials (Journals, Reports, etc.) Theory and problems of Linear Algebra, S. Lipschutz, Schaum's Outline Series (2000) Linear Algebra and its Applications, David C. Lay, Addisson Wesley (2003).
Electronic Materials	Web sites dedicated to Linear Algebra available on the internet -YouTube.
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources			
Facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classroom equipped with projector, whiteboard, and sufficient seating arrangements.			
Technology equipment (Projector, Smart board, Software)	Power point presentations and other hand-outs posted on the course web site.			
Other equipment (depending on the nature of the specialty)				

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students, Peer and program leader	Indirect (Course Evaluation Survey)-Indirect peer evaluation
Effectiveness of students assessment	Students, Program assessment committee	Direct/ Indirect
Quality of learning resources	Students, Faculty members	Indirect
The extent to which CLOs have been achieved	Instructor	Direct/Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE	Board Of Mathematics Department
REFERENCE NO.	2417
DATE	29/03/1446 A. H.; 02/10/2024 A. D.

