

Course Title: Theory of Computation

Course Code: 535 COMP-3

Program: Bachelor in Computer Science

Department: Computer Science

**College: College of Engineering and Computer Science** 

Institution: Jazan University

Version: **V2** 

Last Revision Date:





# Table of Contents:

| Content                                                                 | Page |
|-------------------------------------------------------------------------|------|
| A. General Information about the course                                 |      |
| Teaching mode     Contact Hours                                         | 4    |
| B. Course Learning Outcomes, Teaching Strategies and Assessment Methods |      |
| C. Course Content                                                       | 5    |
| D. Student Assessment Activities                                        | 7    |
| E. Learning Resources and Facilities                                    | 7    |
| 1. References and Learning Resources                                    | 7    |
| 2. Required Facilities and Equipment                                    | 7    |
| F. Assessment of Course Quality                                         | 8    |
| G. Specification Approval Data                                          | 8    |





## A. General information about the course:

| Cou                                            | Course Identification |           |            |       |        |         |  |
|------------------------------------------------|-----------------------|-----------|------------|-------|--------|---------|--|
| 1.                                             | Credit hours:         | 3         |            |       |        |         |  |
| 2. (                                           | 2. Course type        |           |            |       |        |         |  |
| a.                                             | University $\square$  | College □ | Departn    | nent⊠ | Track□ | Others□ |  |
| b.                                             | Required ⊠            | Elective□ |            |       |        |         |  |
| 3. Level/year at which this course is offered: |                       |           | Level-9/ye | eas-5 |        |         |  |

### 4. Course general Description

This course provides students with an understanding of basic concepts in the theory of computation. This module introduces the theory of computation through a set of abstract machines that serve as models for computation - finite automata, pushdown automata, and Turing machines - and examines the relationship between these automata and formal languages. Additional topics beyond the automata classes themselves include deterministic and nondeterministic machines, regular expressions, context free grammars, undecidability, and the P = NP question.

### 5. Pre-requirements for this course (if any):

None

### 6. Co- requirements for this course (if any):

None

### 7. Course Main Objective(s)

- Define languages by abstract, recursive definitions and by regular expressions.
- Construct finite state machines and the equivalent regular expressions.
- Prove the equivalence of languages described by finite state machines and regular expressions.
- Construct pushdown automata and the equivalent context free grammars.
- Construct Turing machines and post machines.
- Determine decidability, finiteness and equivalence properties.

## 1. Teaching mode (mark all that apply)

|    |                                                        | 97            |            |
|----|--------------------------------------------------------|---------------|------------|
| No | Mode of Instruction                                    | Contact Hours | Percentage |
| 1. | Traditional classroom                                  | 44            | 80%        |
| 2. | E-learning                                             |               |            |
| 3. | <ul><li>Hybrid</li><li>Traditional classroom</li></ul> |               |            |
|    | <ul><li>E-learning</li></ul>                           |               |            |
| 4. | Distance learning (Self Learning)                      | 11            | 20%        |





## 2. Contact Hours (based on the academic semester)

| No | Activity          | Contact Hours |
|----|-------------------|---------------|
| 1. | Lectures          | 22            |
| 2. | Laboratory/Studio | 22            |
| 3. | Field             |               |
| 4. | Tutorial          |               |
| 5. | Others (specify)  | 8             |
|    | Total             | 52            |

# B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

|      |                                                                                                                                                                                 | Code of                         |                                                   |                                                       |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------|-------------------------------------------------------|
| Code | Course Learning Outcomes                                                                                                                                                        | CLOs<br>aligned with<br>program | Teaching<br>Strategies                            | Assessment<br>Methods                                 |
| 1.0  | Knowledge and understanding                                                                                                                                                     |                                 |                                                   |                                                       |
| 1.1  | DescribelanguagesusingRegularExpressions,FiniteAutomata,NondeterministicFiniteAutomata,MealyMachines,MooreMachines,ContextFreeGrammars,Pushdown Automata, and TuringMachines () | K1                              | Class lectures and lecture notes                  | Midterm/<br>Assignment 1 /<br>Final Exam/Final<br>Lab |
| 1.2  | Distinguish between Regular<br>Languages, Context Free<br>Languages, Recursive Languages,<br>and Recursive Enumerable (or<br>Computable) Languages ()                           | K1                              | Class lectures/<br>lecture notes/<br>Case studies | Assignment 1 /<br>Final Exam/Final<br>Lab             |
| 2.0  | Skills                                                                                                                                                                          |                                 |                                                   |                                                       |
| 2.1  | <b>Design</b> finite state machines and the equivalent regular expressions.                                                                                                     | S1                              | Class lectures/<br>lecture notes/Case<br>studies  | Midterm/ Assignment 1 / Final Exam/Final Lab          |
| 2.2  | <b>To solve</b> various problems of applying normal form                                                                                                                        | S3                              | Class lectures/<br>lecture notes/                 | Final Exam/<br>Assignments                            |





| Code | Course Learning Outcomes                                                                                                                              | Code of<br>CLOs<br>aligned with<br>program | Teaching<br>Strategies                                                                            | Assessment<br>Methods                           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------|
|      | techniques, push down automata and Turing Machines                                                                                                    |                                            | Case studies /<br>Brainstorming                                                                   | 2/Group<br>Assignments/Lab<br>Exam              |
| 2.3  | <b>Design</b> Turing machines and post machines.                                                                                                      | S4                                         | Class lectures/<br>lecture notes                                                                  | Final Exam/ Group<br>Assignments /<br>Final Lab |
| 2.4  | <b>Derive</b> whether a problem is decidable or not.                                                                                                  | S2                                         | Class lectures/<br>lecture notes                                                                  | Final Exam/ Group<br>Assignments /<br>Final Lab |
| 3.0  | Values, autonomy, and respons                                                                                                                         | sibility                                   |                                                                                                   |                                                 |
| 3.1  | <b>Demonstrate</b> the ability to work in group to achieve common assignments and activities in the field of computational theory and Turing machine. | V2                                         | Small group discussion / Brainstorming/ Class discussion to train students to think independently | Group<br>Assignments/<br>Final Exam             |
| 3.2  |                                                                                                                                                       |                                            |                                                                                                   |                                                 |
|      |                                                                                                                                                       |                                            |                                                                                                   |                                                 |

# C. Course Content

| No | List of Topics                                                                                                                                                                                                                                                                                                                                                                                             | Conta<br>ct<br>Hours |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|    | Chapter – 1 INTRODUCTION TO FINITE AUTOMATA                                                                                                                                                                                                                                                                                                                                                                |                      |
| 1. | Introduction, Deterministic Finite Automata (DFA) -Formal definition, simpler notations (state transition diagram, transition table), language of a DFA.  Nondeterministic Finite Automata (NFA)- Definition of NFA, language of an NFA, Equivalence of Deterministic and Nondeterministic Finite Automata, Applications of Finite Automata, Finite Automata with Epsilon Transitions, Eliminating Epsilon |                      |
|    | transitions, Minimization of Deterministic Finite Automata.                                                                                                                                                                                                                                                                                                                                                | 2T + 2P              |





|    | Chapter – 2 REGULAR EXPRESSIONS (RE) & REGULAR GRAMMARS:                                                                                                                                                                   |             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2. | Introduction, Identities of Regular Expressions, Finite Automata and Regular Expressions- Converting from DFA's to Regular Expressions, Converting Regular Expressions to Automata, applications of Regular Expressions.   |             |
|    | Definition, regular grammars and FA, FA for regular grammar, Regular grammar for FA. Proving languages to be non-regular -Pumping lemma, applications, Closure properties of regular languages.                            | 4T + 4P     |
|    | Chapter – 3 CONTEXT FREE GRAMMAR                                                                                                                                                                                           |             |
| 3. | Derivation Trees, Sentential Forms, Rightmost and Leftmost derivations of Strings. Ambiguity in CFG's, CNF, Pumping Lemma for CFL's, Enumeration of Properties of CFL ( Proof's omitted ).                                 | 4T + 4P     |
|    | Chapter – 4 PUSH DOWN AUTOMATA                                                                                                                                                                                             |             |
| 4. | Definition, Model, Acceptance of CFL, Acceptance by Final State and Acceptance by Empty stack and its Equivalence, Equivalence of CFG and PDA                                                                              | 2T + 2P     |
|    | Chapter-5 TURING MACHINE                                                                                                                                                                                                   |             |
| 5. | Formal definition and behavior, Languages of a TM, TM as accepters, TM as a computer of integer functions, Types of TMs.                                                                                                   | 3T + 3P     |
|    | Chapter – 6 UNSOLVABLE PROBLEMS AND COMPUTABLE FUNCTIONS                                                                                                                                                                   |             |
| 6. | Unsolvable Problems and Computable Functions – Primitive recursive functions – Recursive and recursively enumerable languages – Universal Turing machine.  MEASURING AND CLASSIFYING COMPLEXITY: Tractable and Intractable |             |
|    | problems - Tractable and possibly intractable problems - P and NP completeness - Polynomial time reductions.                                                                                                               | 2T + 2P     |
| 7. | Lab Exam + Revision                                                                                                                                                                                                        | 2T + 2P     |
|    | Total                                                                                                                                                                                                                      | 22T+2<br>2P |

## **D. Students Assessment Activities**

| No | Assessment Assessment Assessment (in week no) |                       | Percentage of Total<br>Assessment Score |
|----|-----------------------------------------------|-----------------------|-----------------------------------------|
| 1. | Midterm Exam                                  | 9 <sup>th</sup> week  | 15%                                     |
| 2. | Assignment I                                  | 5 <sup>th</sup> week  | 10%                                     |
| 3. | Assignment II (Case Study/ Group assignment)  | 11 <sup>th</sup> week | 15%                                     |
| 4. | Lab Exam + Lab Assignment                     | As per schedule       | 20%                                     |
| 5. | Final Theory Exam                             | As per schedule       | 40%                                     |
|    |                                               |                       |                                         |





\*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

# E. Learning Resources and Facilities

## **1. References and Learning Resources**

| Essential References     | Michael Sipser. Introduction to the Theory of Computation. ISBN 978-0357670583.                                                                                                                                                                                                                                                                                                                     |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Supportive References    | <ul> <li>John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman (2007), Introduction to Automata Theory Languages and Computation, 3rdedition, Pearson Education, India.</li> <li>H.R.Lewis and C.H.Papadimitriou, —Elements of the theory of Computation, Second Edition, PHI, 2003.</li> <li>J.Martin, —Introduction to Languages and the Theory of Computation, Third Edition, TMH, 2003</li> </ul> |  |  |
| Electronic Materials     | <ul> <li>http://nptel.ac.in/courses.php?branch=Comp</li> <li>https://www.coursera.org/</li> <li>http://java.sun.com/docs/books/tutorial/</li> <li>http://ssw.jku.at/Misc/CC/</li> </ul>                                                                                                                                                                                                             |  |  |
| Other Learning Materials | Online tutorial                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

## 2. Required Facilities and equipment

| Items                                                                           | Resources                                                                                                                                                                                       |  |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | <ul> <li>Classroom equipped with projector, whiteboard, and sufficient seating arrangements.</li> <li>Lab with software installed and individual computer terminal for each student.</li> </ul> |  |  |
| Technology equipment (projector, smart board, software)                         | <ul> <li>Whiteboards and projectors for classroom and labs</li> <li>Computer Lab equipped with 30 PCs having J2ME platform in Net beans 7.0</li> <li>An active internet connection.</li> </ul>  |  |  |
| Other equipment (depending on the nature of the specialty)                      | None                                                                                                                                                                                            |  |  |

# F. Assessment of Course Quality

| Assessment Areas/Issues  |        | Assessor | Assessment Methods |                                           |
|--------------------------|--------|----------|--------------------|-------------------------------------------|
| Effectiveness of te      | aching |          | Students           | Indirect (Course evaluation survey form)  |
| Effectiveness assessment | of     | students | CRC / QAU / HoD    | Direct (Course reports / result analysis) |





| Assessment Areas/Issues                     | Assessor            | Assessment Methods                                                                                           |
|---------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------|
| Quality of learning resources               | Track leaders / CRC | Indirect (Review, meetings and star rating with suggestions for further modification and improvements)       |
| The extent to which CLOs have been achieved | CRC / QAU           | Direct (CLO assessment<br>template further verified at<br>course coordinator, Track<br>leader and QAU level) |
| Other                                       |                     |                                                                                                              |

**Assessor** (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)

### G. Specification Approval Data

| COUNCIL<br>/COMMITTEE | DEPARTMENT COUNCIL |
|-----------------------|--------------------|
| REFERENCE NO.         |                    |
| DATE                  | 15/10/2023         |

