

Course Specification (Bachelor)

Course Title: Operating Systems

Course Code: COMP - 333

Program: Bachelor in Computer Science

Bachelor in Information Technology

Department: Computer Science

College: College of Engineering & Computer Science

Institution: Jazan University

Version: Course Specification Version Number

Last Revision Date:

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	1
C. Course Content	
D. Students Assessment Activities	5
E. Learning Resources and Facilities	5
F. Assessment of Course Quality	5
G. Specification Approval	6

A. General information about the course:

1. Course Identification

1. C	redit hours: (03	B Hours)			
2. C	ourse type				
Α.	□ University	⊠ College	☐ Department	☐ Track	☐ Others
В.	⊠ Required		☐ Elect	ive	
3. Lo	evel/year at wh	ich this course	is offered: (Leve	l 6 / Year 3)	
4. C	ourse general D	Description:			
Topic		system principles,	file management syster		ections and core concepts. Inagement, processes and
5. P	re-requirement	s for this cours	e (if any):		
Non	e				
6. Pre-requirements for this course (if any):					
None					
7. Course Main Objective(s):					
1 2 3 4	system works. Describe the func Present the main	tions and design of c	gunder operating system operating systems, proc litional (non-distributed Scheduling and virtual)	esses and thread d) operating syste	ls. ems.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100
2	E-learning		
3	HybridTraditional classroomE-learning		

5. Analytically discuss the algorithms used in I/O, file management and deadlocks.

No	Mode of Instruction	Contact Hours	Percentage
	Other (Self Study)		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	26
2.	Laboratory/Studio	26
3.	Field	
4.	Tutorial	
5.	Others (Exams and Revision)	8
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	Define the objective and functions of operating system.	K1	Lectures/Presentati onsMedia LecturesTutorials	Midterm ExamAssignment- 1Final Theory Exam
1.2	Relate different computer architectures leading to the development of modern operating systems.	K2	Lectures/Presentati onsMedia Lectures	 Midterm Exam Assignment- 1 Final Theory Exam
•••				
2.0	Skills			
2.1	Evaluate different approaches of file organization and judge	S2	DiscussionsActive class participation	Lab ExamFinal Theory Exam

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	their respective strengths and weaknesses.		Lab Demonstration	
2.2	Compare the differences between types of kernel, processes and threads.	S1	DiscussionsActive class participation	Assignment-1Midterm ExamFinal Theory Exam
2.3	Measure the performance of various scheduling algorithms based on different parameters.	S2	SimulationBrain stormingLab Demonstration	 Lab Exam Final Theory Exam Assignment-2 (Group Assignment)
2.4	Analyze the potential run-time problems arising from the concurrent operation and their possible solutions.	S1	 Active class participation Problem solving methods 	 Assignment – 2 (Group Assignment) Final Theory Exam
2.5	Apply different memory allocation methods, Paging, Segmentation and Page Replacement Algorithms in memory management schema.	S4	SimulationBrain stormingLab Demonstration	 Assignment – 2 (Group Assignment) Final Theory Exam Lab Exam
3.0	Values, autonomy, and	dresponsibility		
3.1	Demonstrate the ability to work in a team to assess and implement various algorithms of operating system to find out the best possible solutions.	V2	Group Discussion	Assignment-2 (Group Assignment)
3.2	Recognize and educate the public about choices concerning the application of computing and how those choices affect society.	V1	Survey / Case Study	Assignment-1 (Survey/Case Study)
•••				

C. Course Content

No	List of Topics	Contact Hours
1.	Operating System Overview Introduction, Services provided by OS, Computer System Architecture,	4T+4P
	Multitasking, Multiprogramming, Dual mode Vs Multimode operations, Virtualization, System Calls, OS Structure, User and OS Interface	
	Processes and Threads	
2.	Process, PCB, Process States, Context Switch, Operation on Process, Thread Overview, Benefits of Multithreading, Multicore Programming Vs Multithreaded Models, Thread Library and Threading Issues	4T+4P
3.	CPU Scheduling	4T+5P
J.	Types of Scheduling, FCFS, SJF, Priority, RR	41.51
	Deadlocks	
4.	Concurrency, System Model, Deadlock Characterization, Deadlock prevention, Deadlock avoidance, Deadlock detection using banker's algorithm, Recovery from deadlock	5T+4P
	Memory Management	
5.	Address Binding, Logical Vs Physical Address, Dynamic Loading, Dynamic Linking, Swapping, Fixed and Dynamic partitioning, Paging Segmentation, Demand Paging, Thrashing, Page Replacement Algorithms (FIFO,ORA,LRU)	5T+5P
	File Management	
6.	File Concept, File Attributes, File Operations, File Management Systems, File Access Methods, File Directories Structure, VFS, Security and Access Control	4T+4P
	Total	26T + 26P

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Assignment-1	5 th Week	10%
2.	Midterm Exam	7 th Week	15%
3.	Assignment – 2 (Group Assignment)	9 th Week	15%
4.	Lab Exam	As per schedule	20%
5.	Final Theory Exam	As per schedule	40%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Operating System Concepts, 10th Edition 2018, by Abraham Silberchatz, Peter B. Galvin, Greg Gagne, ISBN: 9781119320913. Operating Systems – Internals and Design Principles, 9th Edition 2018, by William Stallings, Prentice Hall, ISBN-13: 978-9352866717.
Supportive References	 Operating Systems – Three Easy Pieces, Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau, 2018, (Version 1.00), ISBN-13: 978-1985086593 Modern Operating Systems, Andrew S. Tanenbaum, 2016, Pearson, 4th Edition, ISBN-10: 9789332575776.
Electronic Materials	 http://williamstallings.com/OperatingSystems/OS8e-Student/ http://www.cs.man.ac.uk/~rizos/CS2051/
Other Learning Materials	• None

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	 Classroom equipped with projector, whiteboard and sufficient seating arrangements. Lab with software installed and individual computer terminal for each student.
Technology equipment (projector, smart board, software)	 Smartboards, whiteboards and projectors for classroom and lab Following software for lab work: Linux (RedHat)
Other equipment (depending on the nature of the specialty)	• None

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	CRC / QAU / HoD	Course reports / result analysis
Effectiveness of Students assessment	Students	Course evaluation survey form
Quality of learning resources	Track leaders / CRC	Review meetings and star rating with suggestions for further modification and improvements
The extent to which CLOs have been achieved	Course Teachers / QAU	CLO assessment template that is further verified at course coordinator and QAU level.
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	DEPARTMENT COUNCIL
REFERENCE NO.	
DATE	