

Course Specification (Bachelor)

Course Title: Digital design

Course Code: COMP-231

Program: Bachelor of Computer Science

Department: Computer Science

College: College of Engineering and Computer Science

Institution: Jazan University

Version: V2

Last Revision Date: 31 August 2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	7

A. General information about the course:

-				r
1	Course		lontii	tication
4.	Course i	ıu		IILALIUII

1. C	credit hours: ()			
2. C	Course type				
A.	□University	□College	□ Department	□Track	□Others
В.	⊠ Required		□Electi	ve	
3. L	evel/year at wh	ich this cours	se is offered: (4 th Lo	evel / Yea	r 02)
4. C	Course general D	escription:			
This course provides basic concepts of digital systems, review of core design components and circuit design principles. It covers the principles and methodology of digital logic design at the gate and switch level, including both combinational and sequential logic elements. It covers the topics of number system, Boolean algebra and switching theory, combinational circuits design using multiplexers, decoders, comparators and adders.					
5. Pre-requirements for this course (if any):					
Nil					
6. Pre-requirements for this course (if any):					
Nil					
	'oursa Main Ohi	octivo(c).			

- Understand the digital hardware concept and basic logic gates.
- Learn the theoretical groundworks of digital design: the Boolean algebra and finite state machines.
- Implement the design of combinational and sequential logic circuits.
- Discuss the basic understanding of digital components, building blocks and arithmetic algorithms.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning		
3	Hybrid		

No	Mode of Instruction	Contact Hours	Percentage
	 Traditional classroom 		
	E-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	28
2.	Laboratory/Studio	28
3.	Field	
4.	Tutorial	
5.	Others (specify)	4
Total		

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	Describe the digital system and their usage in computing science.	K1	Visual & Verbal [Lectures/Presentat ions]	Assignment-1, Midterm Exam, Final Theory Exam
1.2	Relate number systems and their conversion with coding schemes.	K1	Visual & Verbal [Lectures/Presentat ions]	Assignment-1, Midterm Exam, Final Theory Exam
1.3	Explain Boolean expressions and their simplification using axiomatic properties and K-Map.	K1	Visual & Verbal [Lectures/Presentat ions]	Assignment-1, Assignment-2, Final Theory Exam
2.0	Skills			

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.1	Apply Boolean algebra using basic and universal logic gates.	S1	Visual & Verbal [Lectures/Lab Sessions]	Assignment-1, Assignment-2, Final Theory Exam
2.2	Discriminate between Combinational and Sequential circuit and their use in digital systems.	S2	Visual & Verbal [Lectures/Lab Sessions]	Final Lab Exam, Final Theory Exam
	Value and a second	d was a search titler.		
3.0	Values, autonomy, and	responsibility		
3.1	Demonstrate the ability to work in team to solve a common problem.	V2	Group Discussion, Team Activity	Assignment-2

C. Course Content

No	List of Topics	Contact Hours
1.	Digital Systems and Binary Numbers Digital computer and digital systems, binary, decimal, octal and hexadecimal number systems, number base conversion, complements, signed and unsigned numbers, binary codes, binary storages and registers, and binary logic.	6T + 6P
2.	Boolean algebra and logic gates: Basic definitions, axioms definitions of Boolean algebra, basic theorem and properties of Boolean algebra, Boolean functions, canonical and standard forms, logic operations, and digital logic gates.	4T + 4P
3.	Gate-Level Minimization Introduction, The Map Method, Four-Variable K-Map, Product-of-Sums Simplification, Don't-Care Conditions, NAND and NOR Implementation, Other Two-Level Implementations Exclusive-OR Function, Hardware Description Language	4T + 4P
4.	Combinational Logic Combinational Circuits, Analysis Procedure, Design Procedure, Binary Adder-Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Decoders, Encoders, Multiplexers, HDL Models of Combinational Circuits	4T + 4P
5.	Synchronous Sequential Logic Introduction, Sequential Circuits, Storage Elements: Latches, Storage Elements: Flip-Flops, Analysis of Clocked Sequential Circuits,	6T + 6P

	Synthesizable HDL Models of Sequential Circuits, State Reduction and Assignment, Design Procedure	
6.	Registers and Counters Registers, Shift Registers, Ripple Counters, Synchronous Counters, Other Counters, HDL for Registers and Counters	4T + 4P
	Total	28T + 28P

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Mid-Exam	8 th Week	15%
2.	Assignment-1	5 th Week	10%
3.	Assignment-2	11 th Week	15%
4.	Lab Exam	15 th Week	20%
5.	Final Theory Exam	16 th Week	40%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	M. Morris Mano, Michael D. Ciletti , "Digital Design: With an Introduction to the Verilog HDL, VHDL and System Verilog", Pearson Publications, 6th edition 2014, ISBN-13: 978-9353062019
Supportive References	 Ronald J, Tocci, Neal S. Widmer, and Gregory L. Moss, "Digital Systems: Principles and Applications", 11th Edition, 2011, Prentice Hall, ISBN-13: 978-0135103821 Stephen Brown, Zvonko Vranesic, "Fundamentals of Digital Logic with Verilog Design", 3rd Edition, McGraw Hill, 2014, ISBN-13: 978-0073380544
Electronic Materials	 https://www.whoishostingthis.com/resources/vhdl/ http://www.verilog.com/ https://www.coursera.org/learn/digital-systems https://www.allaboutcircuits.com/textbook/digital/
Other Learning Materials	

2. Required Facilities and equipment

	Resources	
	with	projector,
,	sufficient	seating
		poard, and sufficient

Items	Resources	
	• Lab with software installed and an individual computer terminal for each student.	
Technology equipment (projector, smart board, software)	 smartboards and projectors for classroom and labs Following software for lab work: Netbeans, MATLAB 	
Other equipment (depending on the nature of the specialty)	None	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Indirect (Course evaluation survey form)
Effectiveness of Students assessment	CRC / QAU / HoD	Direct (Course reports / result analysis)
Quality of learning resources	Track leaders / CRC	Indirect (Review, meetings, and star rating with suggestions for further modification and improvements)
The extent to which CLOs have been achieved	CRC / QAU	Direct (CLO assessment template further verified at course coordinator, Track leader and QAU level)
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	DEPARTMENT COUNCIL
REFERENCE NO.	
DATE	31 AUGUST 2024

