Course Name	THEORY OF COMPUTATION			Course Code	COMP 535					
Cuadit Haung	3			Contact	Lec	Lab	Total			
Credit Hours				Hours	2	2	4			
Offered as	☐ University Requirement ☐ College Requirement ☒ Program Requirement ☒ Core ☐ Elective									
	☐ ITEC ☐ COMP ☐ CNET									
Level	3			rerequisite	NONE					
Course Description:										
covers a varie representation and procedur	ety of issues in the range for languages ares. The topics inconsuch as Turing ma	with an understanding of mathematical development and machines, as well as go clude introduction to the chines; theory of program	nt of corgain a me	mputer science nore formal un y of computat	e theory, iderstance tion, inc	particula ling of al luding m	orly finite gorithms nodels of			

Upon completion, the student will be able to:

- Define languages by abstract, recursive definitions and by regular expressions.
- Construct finite state machines and the equivalent regular expressions.
- Prove the equivalence of languages described by finite state machines and regular expressions.
- Construct pushdown automata and the equivalent context free grammars.
- Construct turing machines and post machines.
- Determine decidability, finiteness and equivalence properties.

Assessment	Exam-1	\boxtimes	10%	Exam-2	\boxtimes	10%	Assignments		20%
Methods	Attendance		-	Lab Exam	\boxtimes	20%	Final Exam	\boxtimes	40%

Text Book:

- Floyd, R. W. and Beigel, R. The Languages of Machines: An Introduction to Computability and Formal Languages. New Freivalds, Rusins, Fundamentals of Computation Theory, Springer, 2001.
- Hopcroft, John E., and Ullman, Jeffery D., Introduction to Automata Theory, Languages, and Computation Second Edition, Addison-Wesley, 2001.

References:

- ◆ Gurari, E. M. An Introduction to the Theory of Computation. New York: Computer Science Press, 1989Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", The MIT Press, 1st Edition, ISBN 978-0-262-01802-9, 2012.
- ♦ Introduction to Computer theory, Second Edition, Daniel I.A. Cohen., John Wiley & Sons, Inc., New York, 1997