ITEC-426 Systems Integration and Architecture

General Information

Course Code	ITEC-426 Level/		8 th / 4 th	Required (R)/		R	
	Year			Selected Elective (SE)			
Credit Hours	Theory		2	Lab	1	Total	3
Prerequisites	ITEC-322						
Course	Ahamed Ali Shaik Meeran						
Coordinator							

Course Description

This course is designed to provide students with an understanding of Systems Integration (SI) process, approaches, drivers, tools and techniques required for successful SI, critical success factors, and best practices. The course focuses on how a proposed system will be integrated with other existing or planned systems. It addresses the System Integration problem using architectures as the basis and then addresses the evaluation of the architectures in terms of the capabilities they provide. Case studies and examples from the Information Technology (IT), energy, and financial services industry will be used to illustrate the concepts discussed. The students will learn the theory and practice of business process integration, legacy integration, new systems integration, business-to-business integration, integrated program management, integrated Business Continuity Planning (BCP). Specific focus will be given to issues of interface integration and interoperability of systems.

Course Objectives

- ♦ This course will develop the students' ability to learn, create, develop and integrate complex system architectures.
- It includes a student's understanding the role of system architects and relationship to systems engineering and integration. Applying the system architecture concepts to define an enterprise baseline.
- System integration Architecture creates an architectural blue print for transforming the enterprise. One of the important objectives in systems integration is identifying capability gaps as well as redundancies. Facilitating effective systems integration

Course Contents

List of Topics	Weeks
UNIT 1: Systems Engineering & Traditional Engineering	1,2
, Complex Engineered Systems, Structure of Complex System, Complexity in	
Modern Systems, System of Systems	
UNIT 2: The System Development Process, Systems Engineering through the	3, 4, 5
System Life Cycle, Development of a Systems Engineering Life Cycle Model,	
Concept Development Stage, Engineering Development Stage, Post Development	
Stage, Principal stages in system life cycle, Concept Development Phases,	
Engineering Development Phase, The Systems Engineering Method, Requirement	
Analysis, Functional Definition, Physical Definition, Design Validation	
UNIT 3: Systems Engineering Management, Project Management and Systems	5, 6,
Engineering, Work Breakdown Structure, Elements of a Typical WBS, System	
support and System Testing, Elements of Typical SEMP, Organization of Systems	
Engineering	
UNIT 4: Needs, Requirement & Functional Analysis, Functional Definition,	7,8,9
Operational, Functional, Performance and Physical Requirements, Needs analysis	

phase flow diagram, Implementation concept exploration, Concept exploration phase flow diagram, Requirements development process, Functional Analysis, System Engineering Method in Concept Definition, Concept Selection and validation, Concept definition Phase flow diagram, Functional Analysis and formulation	
UNIT 5: System Architecting, Model Based Systems Engineering:	10, 11,
Role of Systems Architect Within Systems Engineering, Types of Architecture,	
Architectural Views, Architecture Development, Architecture Validation	
UNIT 6: Risk Management, Risk Management in the Systems Engineering Life	12, 13
Cycle, Risk Management, Risk Reduction Through the System Life Cycle,	
Components of Risk Management, Risk Assessment, Role of Systems Engineering,	
Risk Management Plan	
UNIT 7: Integration and System of Systems Engineering, Systems Integration:	14,15
Integrating the total System, Place of Integration in the System Life Cycle, Program	
Focus, Program Participants, Systems Engineering Method in Integration, Total	
System Integration, System of Systems Integration, Types of Integration	

Textbook

Systems Engineering Principles and Practice, Alexander Kossiakoff, Samuel J. Seymour, Third Edition, Published: 2020, Publisher: Wiley & Sons Inc

Reference Materials

Software Systems Engineering, Andrew P Sage, James D Palmer, Wiley Series

Architecting Resilient Systems: Accident Avoidance and Survival and Recovery from disruptions, Scott Jackson, Wiley series

Course Learning Outcomes

CLO	Description	Level of Learning (LOL)	Mapped PI
CLO#01	Identify the activities of System Engineering Plan	Knowledge	PI 1.3
CLO#02	Design the integration of the Total System.	Creating	PI 2.3
CLO#03	Analyse the Operational, Logical, Architectural views.	Analysis	PI 3.1
CLO#04	Demonstrate the responsibilities of Program Manager in Systems Engineering.	Comprehension	PI 4.3
CLO#05	Explain the functional building blocks in functional Analysis.	Application	PI 5.4
CLO#06	Explain integrating the total system in Systems Integration.	Application	PI 6.3

CLO-SO-PI Mapping

	SOs						
CLOs	SO1	SO2	SO3	SO4	SO5	SO6	
CLO#01	PI 1.3	-	PI 3.2	PI 4.1-	-	-	
CLO#02	-	PI 2.3	-	-	-	_	
CLO#03	-	-	PI.3.1	PI 4.2	-	-	
CLO#04	-	-	-	PI.4.3	PI.5.1	-	
CLO#05	-	-	-	-	PI.5.4	-	
CLO#06	-	-	-	-	-	PI.6.3	

Approvals

Prepared by	Ahamed Ali Shaik Meeran			
Course Coordinator				
Approved by	Dr.	TL		
Track Leader		Signature		
Last updated	August 18, 2024			