

Course Specifications

Course Title:	Coordination and organometallic chemistry
Course Code:	CHEM 323 - 3
Program:	Bachelor of Science in Chemistry
Department:	Chemistry
College:	Science
Institution:	Jazan University (JU)-College of Science

A. Course Identification3	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes4	
1. Course Description	4
3. Course Learning Outcomes	
C. Course Content5	
D. Teaching and Assessment5	
Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support7	
F. Learning Resources and Facilities7	
1.Learning Resources	7
2. Facilities Required	7
G. Course Quality Evaluation7	
H. Specification Approval Data8	

A. Course Identification

1.	Credit hours:	3 hrs	Workload: 166	ECTS: 5.9		
2.	Course type	_				
a.	University	College	Department $\sqrt{}$	Others		
b.	Requir	red √ E	lective			
3.	Level/year at whi	ch this course	e is offered: L 6, Year	3		
4.	4. Pre-requisites for this course (if any): CHEM 322-4					
5.	5. Co-requisites for this course (if any):					
	none					

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom & LABs	60	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	30
3	Tutorial	-
4	Others (specify)	_
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

Course Title	Course Conton (CH)		Contact Hours (CH)		Year	Year	• .	Level	Pre- requisite
		Lec.	Prac.	(CU)					
Coordination and organometallic chemistry	CHEM 323	2	2	3	3	6	CHEM 322-4		

Course objectives: They are to identify the following.

- 1- Recognizing the stereochemistry of complexes and molecular symmetry.
- 2- Recognizing the concept of donating and accepting atom.
- 3- Recognizing the nomenclature rules of the complexes.
- 4- Recognizing the types of ligands and the coordination number.
- 5- Recognizing the polar and non-polar molecules.
- 6- Recognizing the methods of preparation of organometallic compounds.
- 7- Recognizing the uses of organometallic compounds.

Syllabus: A-Theoretical contents

- a. <u>Coordination Chemistry</u>: Concept of donating and accepting atoms Types of ligands
 – Coordination number Stereochemistry of complexes and molecular symmetry –
 Central atom groups Nomenclature rules of the complexes Crystal field theory –
 Molecular orbital theory.
- b. <u>Organometallic Chemistry</u>: General rules Different methods of preparation Uses of organometallic compounds in the organic preparations (organic compounds of lithium, magnesium, boron, aluminum and silicon) Organometallic compounds of transition elements, reactions of these compounds and their uses in organic preparations.

Syllabus: B-Practical contents

Selected experiments Selected experiments related to preparation and reactions of the complexes

*See attachment

2. Course Main Objective

This course aims to study the coordination and organometallic compounds, their methods of preparation and their uses.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding:	
	Up on completing this course, student will be able to	
1.1	Demonstrate abroad knowledge and understanding about the fundamentals and properties of main groups of transition elements in periodic table, coordination	K.1
L	parameters, organometallic complexesetc (P)	

	CLOs	Aligned PLOs
1.2	Describe the postulates of Werner theory, organometallic rules and coordination parameters. (P)	K.2
2	Skills: Up on completing this course, student will be able to	
2.1	Demonstrate the knowledge and skills to calculate the coordination number, CFSE, oxidation state of metal and magnetic moments (P)	S.1
2.2	Apply their experimental basics and skills to use laboratory equipment, modern instrumentation, and classical techniques for carrying out experiments as well as accurately record and analyze the results of such experiments. (P)	S.2
2.3	Examine his material and lab safety background to follow proper procedures and regulations for safe handling and use of chemicals. (I)	S.3
2.4	Make effective use of communication, and online technology about transition elements topics in order to improve their basic knowledge in writing with a good verbal and clear scientific language. (1)	S.4
3	Values: Up on completing this course, student will be able to	
3.1	Work as a group leader in cooperator with other colleagues. (P)	V.1

C. Course Content

No	List of Topics	Contact Hours			
1	Definitions, series theory and Werner's theory and types of complexes	4			
2	Calculations of oxidation state of central atom and charge on the coordination sphere, factors affecting of the complex formation	3			
3	Effective atomic number rules, Nomenclature, magnetic susceptibility, coordination numbers and the stereochemistry and types of chelates	6			
4	Isomerisms of coordination compounds.	2 + 1Exam			
	bonding theories (VBT, CFT, CFSE and MOT)				
5	Reaction mechanisms of coordination compounds (substitutions and elimination reactions)- Inert and Labile reactions	5			
6	Principles, Nomenclature, Preparation, properties, reactions of organometallic compounds—16 and 18 rules of organometallic compounds—				
	Applications of coordination and organometallic compounds.	1			
	LAB work	30			
	Total				

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		

Code	Course Learning Outcomes	Т	eaching Strategies	Assessment Methods
1.1	Demonstrate abroad knowledge about fundamentals and properties of n groups of transition elements in periodable, coordination paramet organometallic complexesetc	Lecture Open discussion in class	MCQ Short answer Q Fill-in the Blank	
1.2	Describe the postulates of Werner the organometallic rules and coordina parameters.		Lecture Open discussion in class	MCQ Short answer Q Fill-in the Blank
2.0	Skills			
2.1	Demonstrate the knowledge and skill calculate the coordination number, CF oxidation state of metal and magn moments	SE,	Lecture Open discussion in class Web-based work	MCQ Short answer Q Fill-in the Blank
2.2	Apply their experimental basics and some to use laboratory equipment, mode instrumentation, and classical techniques for carrying out experiments as well accurately record and analyze the result such experiments.	lern ques l as	Lab work Group work	MCQ Short answer Q Practical Exam
2.3	Examine his material and lab say background to follow proper procedule and regulations for safe handling and of chemicals.	ures	Group work Lab work	MCQ in safety
2.4	Make effective use of communication, and online technology about transition elements topics in order to improve their basic knowledge in writing with a good verbal and clear scientific language. (I)		ppt. Presentations Group discussion	Presentation
3.0	Values			
3.1	Work as a group leader in cooperator vother colleagues.	with o)	Lab work Group discussion Research group	Practical assignments Laboratory reports Web based research

2. Assessment Tasks for Students

#	Assessment task*		Week Due	Percentage of Total Assessment Score
1	Lecture Quizzes		5, 8	3
2	Homework assignment	10	2	
3	Mid-term exam	12	15	
4	Quiz in safety	12	0	
5	ppt. Presentation		12	0
6		Lab report/Notebook	13	5
7	Practical work	Sheet	14	10
8		Final Experiment	14	15
9	Final Exam	16	50	
		100		

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

The instructor will be available for academic counseling on daily basis for 2h/day during office hours.

F. Learning Resources and Facilities

1.Learning Resources

1.Learning Resources	
Required Textbooks	 Concise Inorganic Chemistry, J. D. Lee, 5TH ED, Wiley India Pvt. Limited, 2008. Introduction to Coordination Chemistry, G. A. Lawrance, A John Wiley and Sons, Ltd., 2010 Direct Synthesis of Coordination and Organometallic Compounds, A.D. Garnovskii and B.I. Kharisov, Elsevier Science, 1999.
Essential References Materials	 1- Inorganic Chemistry: Principles of Structure and Reactivity, Okhil K. Medhi, James E. Huheey, Richard L. Keiter, Ellen A. Keiter, 4th Ed., Pearson Education Singapore Pte Ltd., 2006. 2- Advanced Inorganic Chemistry, Author: Cotton Wilkinson Murillo Bochmann, 6th Edition, Wiley India Pvt Ltd., 2012.
Electronic Materials	https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Modules_and_Websit_es_(Inorganic_Chemistry)/Coordination_Chemistry
Other Learning Materials	1. www.wikipedia.org/ http://www.wpi.edu/Academics/Depts/Chemistry/Courses/General/

2. Facilities Required

20 I delilios Itelano		
Item	Resources	
Accommodation	1 Lecture room(s) for groups of 50 students	
(Classrooms, laboratories, demonstration rooms/labs, etc.)	1 Lab room(s) for groups of 25 students	
Technology Resources (AV, data show, Smart Board, software, etc.)	Smart board, Data show, Black board, internet,	
Other Resources		
(Specify, e.g. if specific laboratory	Glassware, Oven	
equipment is required, list requirements or	Glass ware, even	
attach a list)		

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of Teaching and Assessment	Student	Likert-type Survey (CES) Indirect

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Extent of achievement of course	Instructor &	Class room evaluation
learning outcomes	Course coordinator	(direct & indirect)
Quality of learning resources	Program coordinator	Indirect
Exam Quality assessment	Assessment committee	Indirect

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Chemistry Department Council
Reference No.	42 / 35 /102 112
Date	17 /09 /1442 Corresponding to 28 / 04 /2021

* Practical contents

Practica	n contents		
No.	EXPERMENTS	Equipment, Chemicals and Tools.	No of weeks for
exp.			each experiment
1	General rules of safety		
2	Introduction about coordination	Periodic table	One week
	chemistry and the safety in the laboratory.		
3	Direct Titration	**0.01M of EDTA	One week
3	Determination of Magnesium (II)	**Buffer (PH=10)	One week
	,	**Soiochrome Black T (E.B.T) Indicator	
		**Mg ⁺² solution	
4	Direct Titration	**0.01M of EDTA	One week
	Determination of Zinc (II)	**Buffer (PH=10)	
		**Soiochrome Black T (E.B.T) Indicator	
		**Zn ⁺² solution	
5	Direct Titration	**0.01M of EDTA	One week
	Determination of cadmium (II)	**Buffer (PH=10)	
		**Soiochrome Black T (E.B.T) Indicator	
		**Cd ⁺² solution	
6	Direct Titration	**0.01M of EDTA	One week
	Determination of Copper (II)	**Buffer (PH=10)	
		**Murexide (Indicator)	
		**Cu ⁺² solution	
7	Direct Titration	**0.01M of EDTA	One week
	Determination of Manganese (II)	**Buffer (PH=10)	
		**Soiochrome Black T (E.B.T) Indicator	
		**Mn ⁺² solution	

8	Direct Titration Exps.	**0.01M of EDTA	One week
	Determination of Lead (II)	**Buffer (PH=10)	
		**Soiochrome Black T (E.B.T) Indicator Pb ⁺² solution	
9	Indirect and Back Titration Exps.	**0.01M of EDTA	One week
	Determination of Aluminum (III)	** 0.01 M Zinc Sulphates	
	, ,	**Buffer (PH=10)	
		**Soiochrome Black T (E.B.T) Indicator	
		**Al ⁺³ solution	
10	. Indirect and Back Titration Exps.	**0.01M of EDTA	One week
	Determination of Nickel (II)	** 0.01 M Zinc Sulphates	
	` '	**Buffer (PH=10)	
		** Murexide (Indicator)	
		** Ni ⁺² solution	
11	Substitution Titration Exp.	**0.01M of EDTA	One weeks
	Determination of Calcium	**Ca ⁺² solution	
		**Buffer (PH=10)	
		**Magnesium Complex of EDTA (Mg-	
10	T D1 (W) (I D	EDTA)	
12	InDirect Titration Exps. Determination of Lead (II)	**0.01M of MgSO ₄ **0.01M of EDTA	One week
	Determination of Lead (II)	**Buffer (PH=10)	
		**Soiochrome Black T (E.B.T) Indicator	
		Pb ⁺² solution	
13	Preparation and analysis of monooxalato	** Glassware.	One week
	iron(II) complex	** Ferrous sulfate	
		** Ferrous ammonium sulphate.	
		**oxalic acid dihydrate.	
		** Acetone.	
		** Ni ⁺² solution	
14	Preparation and characterization of	** Glassware.	One weeks
	potassium trisoxalatochromate(III)	**chromium sulfate	
	trihydrate	** Potassium dichromate	
	K ₃ [Fe(C ₂ O ₄)].3H ₂ O	** Potassium oxalate monohydrate	
		** Oxalic acid dihydrate ** Sulphuric acid	
		** Potassium permanganate	
		** Ammonoium persulphate	
		** H ₂ O ₂	
		** Ethanol	
15	Preparation of potassium cis and trans-	** Glassware.	One week
	diaqua dioxalato chromate (III).	** chromium sulfate	
	Cis &Trans K[Cr(C ₂ O ₄) ₂ (H ₂ O) ₂]	** Potassium dichromate	
		** Potassium oxalate monohydrate	
		** Oxalic acid dihydrate	
		** Ethanol	