

Course Specifications

Course Title:	Chromatographic Analysis
Course Code:	CHEM 313
Program:	Bachelor in Chemistry
Department:	Chemistry Department
College:	College of Science
Institution:	Jazan University (JU)

Table of Contents

A. Course Identification3	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes4	
1. Course Description	4
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content5	
D. Teaching and Assessment5	
Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities7	
1.Learning Resources	7
2. Facilities Required	7
G. Course Quality Evaluation8	
H. Specification Approval Data8	

A. Course Identification

1. Credit hours:	3hs	Workload:	166 .2	ECTS: 5.9
2. Course type				
a. University	College	e Depa	artment 🗸	Others
b. Requ	iired 🗸	Elective		7 -
3. Level/year at wl	hich this co	ourse is offere	ed: Level 5	Year 3
4. Pre-requisites fo	or this cour	rse (if any):		
			none	
5. Co-requisites for this course (if any):				
	none			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	30	100%
1	LAB	30	10070
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

. Contact 120415 (cased on academic semester)				
No	Activity	Contact Hours		
1	Lecture	30		
2	Laboratory/Studio	30		
3	Tutorial			
4	Others (specify)			
	Total	60		

B. Course Objectives and Learning Outcomes

1. Course Description

Course Title	Course Number	Contac (CH)	t Hours	unit	Year	Level	Pre- requisite
		Lec.	Prac.	(CU)			requisite
Chromatographic Analysis	CHEM 313	2	2	3	3rd	5th	

Course Objectives; They are to identify the following

- [1] Develop basic understanding of chromatography principles and theories.
- [2] Recognize the advantages and limitations of the main chromatographic techniques.
- [3] Calculate chromatographic factors and constants.
- [4] Interpret chromatographic data and results.
- [5] Develop basic experimental skills of chromatographic analysis.

Syllabus: A-Theoretical contents

definitions of chromatographic analysis terms and parameters, classifications of chromatographic methods, advantages and disadvantages of the different techniques. It will also cover the main theories of chromatography and calculating and interpreting chromatographic factors and parameters. Applications of chromatographic analysis will also be discussed.

Syllabus: A-Practical contents

Practical applications of different chromatographic separation techniques.

2. Course Main Objective

This course aims to give the student an introduction to the principles and theories of chromatographic analysis as a tool of separation for quantitative analysis and qualitative analysis. The course will also cover the applications of chromatographic analysis.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding: Upon completion of this course, student will be able to	
1.1	Demonstrate a broad understanding and critical view of the principal theories, concepts and terminology of chromatographic analysis and its applications (P)	K1
1.2	Describe the main techniques and instrumentations used in chromatographic analysis and their advantages and limitations and applications (P)	K2
2	Skills: Upon completion of this course, student will be able to	
2.1	Demonstrate an ability in critical thinking, numeracy, statistical, analytical reasoning, use of graphs and charts to solve problems in chromatographic analysis. (P)	SI
2.2	Perform experiments using various chromatographic techniques; record, analyze and interpret the chromatographic data, and write reports (P)	S2

	CLOs	Aligned PLOs
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals. (P)	S3
2.4	Make effective use of communication, library searching and information technology about chromatographic analysis. (P)	S4
3	Values: Upon completion of this course, student will be able to	
3.1	Working as a group leader in cooperation with other colleagues. (P)	V1

C. Course Content

No	List of Topics	Contact Hours	
1	Course introduction and organization	2	
2	Introduction to separation	2	
3	Introduction to chromatography	2	
4	Basic chromatographic theory, terms and equations	4	
5	Paper chromatography (PC)	2	
6	Thin-layer chromatography (TLC)	2	
7	High Performance Liquid chromatography (HPLC)	5	
8	Gas chromatography (GC)	5	
9	Analysis of real samples	2	
10	Other separation techniques	2	
	Exams, quizzes and discussions	2	
	Practical experiments on different chromatographic separation techniques.	30	
	Total		

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding Upon completion of this course, student will be able to		
1.1	Demonstrate a broad understanding and critical view of the principal theories, concepts and terminology of chromatographic analysis and its applications (P)		oral and written examinations laboratory reports
1.2	Describe the main techniques and instrumentations used in chromatographic analysis and their advantages and limitations and applications (P)	lecture / discussion / Seminars /Individual presentation	
2.0	Skills Upon completion of this course, stude	nt will be able to	

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
2.1	Demonstrate an ability in critical thinking, numeracy, statistical, analytical reasoning, use of graphs and charts to solve problems in chromatographic analysis. (P)	lecture / discussion / Seminars /Individual presentation	oral and written examinations laboratory reports
2.2	Perform experiments using various chromatographic techniques; record, analyze and interpret the chromatographic data, and write reports (P)	Lab work, group work	lab report/ Lab notebook.
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals. (P)	lab demonstrations / hands-on student learning activities	Observation of practical skills / Safety exam / Practical assignments and laboratory reports
2.4	Make effective use of communication, library searching and information technology about chromatographic analysis. (P)	research activities / project- based learning / Technology-enabled learning	assignments and reports / project / seminar / report
3.0	Values Upon completion of this course, student will be able to		
3.1	Working as a group leader in cooperation with other colleagues. (P)		group project reports / Practical assignments and laboratory reports /

2. Assessment Tasks for Students

#	Assessment task*		Week Due	Percentage of Total Assessment Score
1	Homew	ork assignment	2	1.25
2	Lecture	Quiz	3	1.25
3	Homew	ork assignment	3	1.25
4	Lecture	Quiz	5	1.25
5	Quiz in	Safety	5	0
	Mid-ter	m exam	9	15
	Present	ation session	11	0
6		Quiz in Safety	5	0
7	LAB	Lab reports and assignments	2,3,4,5,7,9	15
8	LAD	Lab Sheet Exam	15	5
9	1	Final Practical Exam	15	10
10	Final E.	xam	16	50 %
			Total	100 %

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- Instructor will be available for academic counseling on daily basis for at 4h/day during office hours.
- The office hours are listed in the instructor time table and delivered to students in the first lecturer in each semester.
- Instructor is available in a WhatsApp group with student.
- E-mail and Telephone number are delivered to student for any help during semesters.

F. Learning Resources and Facilities

1. Learning Resources

1. Learning Resources	
Required Textbooks	1- Skoog, Douglas, Donald West, F. L. Holler, and Stanley Crouch. Fundamentals of analytical chemistry. Cengage Learning,9th Edition 2014. 2- ســــــــــــــــــــــــــــــــــــ
Essential References Materials	 Skoog, Douglas, Donald West, F. L. Holler, and Stanley Crouch. Fundamentals of analytical chemistry. Cengage Learning,9th Edition 2014. Ahuja, Satinder. Chromatography and separation science. Vol. 4. Academic Press, 2003. Miller, James M. Chromatography: concepts and contrasts. John Wiley & Sons, 2nd Edition, 2005. Braithwaite, Alan, and J. F. Smith. Chromatographic methods. Springer, 5th Edition, Reprint 1999.
Electronic Materials	 http://www.chromacademy.com/ www.chromforum.org/ http://www.lcresources.com/ http://www.sepscience.com http://chemwiki.ucdavis.edu/Analytical_Chemistry/Instrument al_Analysis/Chromatography/ https://chem.libretexts.org/Special:Search?qid=&fpid=230&fp th=&query=chromatography&type=wiki
Other Learning Materials	● <u>None</u>

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	A Lecture hall for 30 students equipped with modern teaching technology (projector, smart board, computer and internet)

Item	Resources	
	- Laboratory in accordance with the rules of safety and personal protection accessories should be available to all students	
Technology Resources (AV, data show, Smart Board, software, etc.)	- Laptop computer, smart board and internet access in the classroom and laboratory	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	- Chemicals and standards used in lab experiments - Related analytical equipment and instruments such as GC, HPLC, UV lamp for TLC, separation columns and accessories, pH meter, analytical balance,etc	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods	
Effectiveness of Teaching and Assessment	Student	Likert-type Survey (CES) Indirect	
Extent of achievement of course learning outcomes	Instructor & Course coordinator	Class room evaluation (direct & indirect)	
Quality of learning resources	Program coordinator	<u>Indirect</u>	
Exam Quality assessment	Assessment committee	<u>Indirect</u>	
Effectiveness of Teaching and Assessment	Student	Likert-type Survey (CES) <u>Indirect</u>	

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Chemistry Department Council
Reference No.	42 / 35 /102 112
Date	17 /09 /1442 Corresponding to 28 / 04 /2021

Attachment:

LAB EXPERMENTS EXP PART

Lab. Experiments' organization and manual design Data Show.	
manual design	
Safety demonstration Safety Equipment in the lab.	
Goggles; gloves and fume hoods.	
Separating food colors Chromatography paper; Capillary tube to spot	
using paper samples; Beaker tall-form 500-mL; watch glass large	
chromatography (10 III beaker); Scissors; Pencii; Ruier.	
Commercial food colors; Sodium chloride solution,	
NaCl, 0.1%.	
Goggles; gloves and fume hoods.	
Thin Layer Chromatography Sheet: (20 x 20 cm)	
covered with 0.20 mm layer of silica gel 60	
(MACHEREY-NAGEL ALUGRAM® Xtra SIL G or	
similar); Capillary tube to spot samples; Beaker, 1000-	
mL (Developing Chamber); Watch glass, large (to fit	
Separating Amino beaker); Spraying bottle for the detecting reagent;	
Acids by Thin Layer Scissors to cut the TLC sheet; Pencil; Ruler.	
Chromatography Amino Acids STANDARD solutions of: Lysine, B-	
Alanine, Tryptophan.	
Developing solvent (Mobile Phase): a mixture of	
Acetonitrile: water (70:30 vol/vol).	
Detecting reagent: Ninhydrin solution - 0.3% (w/vol)	
ninhydrin	
in n-butyl alcohol containing 3% glacial acetic acid.	
Drying oven or hair dryer for hot air.	
Goggles; gloves; face masks and fume hoods. Thin Layer Chromatography Sheet: (20 x 20 cm)	
covered with 0.20 mm layer of silica gel 60	
(MACHEREY-NAGEL ALUGRAM® Xtra SIL G or	
Separation and similar); Capillary tube to spot samples; Beaker, 1000-	
Identification of Pain- ML (Developing Chamber); Watch glass, large (to fit	
Killing Drugs beaker); Scissors to cut the TLC sheet; Pencil; Ruler.	
by Thin Layer STANDARD solutions for Active ingredients:	
Chromatography Caffeine (6.5 mg/mL); Paracetamol (50 mg/mL);	
Acetylsalicylic acid (30 mg/mL); Painkiller tablets;	
Developing solvent (Mobile Phase): a mixture of Ethyl	
acetate / Hexane / Acetic acid (60:39:1).	
UV light box with lamp at short wavelength.	
Goggles; gloves; face masks and fume hoods.	
Chromatography column (400 x 22 mm): Beakers (2)	
Separation of dyes by 100-ml · Plastic droppers or Pasteur pipettes.	
Column Massuring cylinder 50 ml : Funnal with wide stam:	
Chromatography Pencil (for tapping); Long glass rod to position the	
cotton wool plug.	

	Dyes Mixture: Mixture of Methyl Orange and	
	Methylene Blue solutions (1:1). Single-compound	
	solutions are prepared in 95% ethanol; Mobile Phase	
	(Elution solvents): FIRST elution solvent: 95% (v/v)	
	Ethanol/Water. SECOND elution solvent:	
	Acetonitrile-Water-Acetic Acid (80:15:5 v/v).	
	Goggles; gloves; and fume hoods.	
	HPLC with UV Detector; Ultrasonic bath.	
Determination of	Volumetric flasks (2x10 mL); Reagent bottles (1x60	
Caffeine and Benzoic	mL); Glass pipette (1x1 mL); Beakers (1x50 mL, 2x25	
Acid in Soft Drinks by	mL); Syringe Filter (0.2 μm); Plastic syringe (1x2	
HPLC with UV	mL); HPLC glass vial (1x1.5mL).	
detector	Soft drink sample; Phosphate buffer solution at pH=3	
	(50 mL); HPLC mobile phase components (Methanol	
	and Phosphate buffer).	
	Goggles; gloves; and fume hoods.	
	GC with Thermal Conductivity Detector (TCD).	
Qualitative Separation	Small Vials for the solvents; 10 uL micro syringe.	
of Alcohols by Gas	Single-Standard of Alcohols (Methanol, Ethanol, 2-	
Chromatography	Propanol and 1-Butanol); Mixture of all the four	
	alcohols to examine the separation conditions;	
	Unknown mixture of the above alcohols.	
Field trip to a	A bus accommodating the total number of students in	
chromatography lab	addition to 3 instructors.	
Experiments review	Data show and alassayara for damonstration	
and discussions.	Data show and glassware for demonstration.	
Practical and sheet	Depends on the experiments assigned for the even	Week 15
exams	Depends on the experiments assigned for the exam.	