

Course Specifications

Course Title:	Thermodynamic Chemistry
Course Code:	CHEM 241
Program:	Bachelor in Chemistry
Department:	Chemistry
College:	College of Science
Institution:	Jazan University (J U)

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	4
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support	
F. Learning Resources and Facilities	
1.Learning Resources	7
2. Facilities Required	7
G. Course Quality Evaluation	
H. Specification Approval Data7	

A. Course Identification

1.	Credit hours:	3hs	Workload:	166.2	ECTS: 5.9		
2.	Course type						
a.	University	Colle	ege Departm	ent 🗸	Others		
b.	Requ	uired 🗸	Elective				
3.	Level/year at w	hich this	course is offered:	Level 4	Year 2		
4.	Pre-requisites f	or this co	urse (if any):				
	none						
5.	5. Co-requisites for this course (if any):						
			nor	ne			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100 %
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	30
3	Tutorial	
4	Others (specify)	
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

Course Title	Course Number	Contac (CH)	t Hours	Credit unit	Year	Level	Pre- requisite
		Lec.	Prac.	(CU)			requisite
Thermodynamic	CHEM 241	2	1	3	2	4	none

Course Objectives

- 1. Identify the types of thermodynamic systems and processes
- 2. Recognize the different thermodynamic laws and thermochemistry
- 3. Calculate the required thermodynamic parameters via solving problems
- 4. Identify the applications of thermodynamic phenomena
- 5. Understand the phase rule and related phase transitions
- 6. Investigate one, two and three component system and calculate degree of freedom

Syllabus: A-Theoretical contents

Heat and work, Heat capacity, specific heat, thermodynamic process, thermodynamic laws: thermochemistry, Carnot cycle, Joule-Tomson effect Gibbs- Helmholtes free energy, phase rule, system with different component.

Syllabus: A-Practical contents

Experimental work illustrating selected parts of the theoretical content.

2. Course Main Objective

The course is designed to give the students basic information about the thermodynamic chemistry, laws, thermochemistry and phase rule

3. Course Learning Outcomes

	CLOs	Alig	gned-PLOs
1	Knowledge and Understanding: <i>Upon completion of this course, student will be able to</i>		
1.1	Demonstrate a broad understanding and critical view on principal of thermodynamic chemistry, Concepts and terminology of thermodynamic topics including; Heat, Work, different types of systems and laws of thermodynamic	(I)	K1
1.2	Describe correctly the different phenomena associated with thermodynamic laws, phase rule and phase transitions	(1)	K2
2	Skills : Upon completion of this course, student will be able to		
2.1	Demonstrate an ability in critical thinking, numeracy, statistical, analytical reasoning, use graphs, charts and to solving problems related to work, Enthalpy, internal energy, Entropy, Gibbs free energy, Helmholtz free energy, degree of freedom and systems with different component.	(I)	<i>S1</i>
2.2	Perform experiments in thermodynamic chemistry, record, analyze, interpret the scientific data, and write reports.	(I)	<i>S2</i>

	CLOs	Aligned-PLOs		
2.3	2.3 Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals.		S3	
3	Values: Upon completion of this course, student will be able to			
3.1	Cooperate with other colleagues to prepare an article review on selected thermodynamics topic.	(I)	VI	

C. Course Content

No	No List of Topics			
1	Basics of thermodynamic chemistry	2		
2	The 0th. Law of thermodynamics and Gases	2		
3	Work and Heat, Internal Energy and the 1st. Law of Thermodynamics	5		
4	Entropy, the 2nd. Law of Thermodynamics and More on Entropy	5		
5	The 3rd. Law of Thermodynamics	4		
6	Thermochemistry	4		
7	Solutions and Condensed Phases Equilibrium and Chemical Equilibrium, Changes in Equilibrium Constants	4		
8	A Single -Component System and Phase Transition	2		
9	The Gibbs Phase Rule and Two Components: Liquid/Liquid Systems	2		
10	Selected topics related to course content	30		
	Total	60		

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods				
1.0	Knowledge and Understanding <i>Upon completion of this course, student will be able to</i>						
1.1	Demonstrate a broad understanding and critical view on principal of thermodynamic chemistry, Concepts and terminology of thermodynamic topics including; Heat, Work, different types of systems and laws of thermodynamic	lecture / discussion Seminars /presentation	oral and written examinations laboratory reports				
1.2	Describe correctly the different phenomena associated with thermodynamic laws, phase rule and phase transitions	lecture / discussion / Seminars /Individual presentation	oral and written examinations laboratory reports				
2.0	Skills Upon completion of this course, stude	nt will be able to					
2.1	Demonstrate an ability in critical thinking, numeracy, statistical, analytical reasoning, use graphs, charts and to solving problems related to work, Enthalpy, internal energy, Entropy, Gibbs free energy, Helmholtz free energy, degree of						

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods			
	freedom and systems with different component.					
2.2	Perform experiments in Thermodynamic chemistry, record, analyze, interpret the scientific data, and write reports.	Lab work, group work	lab report/ Lab notebook.			
2.3	Knows the proper procedures and regulations for safe handling and use of chemicals and can follow the proper procedures and regulations for safe handling when using chemicals.	lab demonstrations / hands-on student learning activities	Observation of practical skills / Safety exam / Practical assignments and laboratory reports			
3.0	Values Upon completion of this course, student will be able to					
3.1	Working a group leader in cooperation with other colleagues.	lab demonstrations / whole group and small group discussion	group project reports / Practical assignments and laboratory reports /			

2. Assessment Tasks for Students

#		Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homew	ork assignment	2	1 %
2	Lecture	Quizzes	4	3 %
3	Mid-ter	m exam	6	15 %
4	Homew	ork assignment	8	1 %
5	Group work presentation		12	0
6		Quiz in Safety	5	0
7	LAB	LAB Sheet	15	10 %
8	LAB	Final practical exam	15	15 %
9	Lab report		15	5 %
10	0 Final Exam		16	50 %
			Total	100 %

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- Instructor will be available for academic counseling on daily basis for at 4h/day during office hours.
- The office hours are listed in the instructor time table and delivered to students in the first lecturer in each semester.
- Instructor is available in a WhatsApp group with student.
- E-mail and Telephone number are delivered to student for any help during semesters.

F. Learning Resources and Facilities

1. Learning Resources

Required Textbooks	Physical Chemistry (Second Edition) by David W. Ball, Cleveland State University, 2014.
Essential References Materials	Translated Arabic version of peter Atkins (KSU)
Electronic Materials	Physical Chemistry (Second Edition) by David W. Ball, Cleveland State University, 2014.
Other Learning Materials	<u>www.wikipedia.org/</u> <u>https://chem.libretexts.org/Special:Search?qid=&fpid=230&fpth=&q</u> <u>uery=thermodynamic&type=wiki</u>

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	1 Lecture room(s) for groups of 50 students 1 Lab room for group of 25student
Technology Resources (AV, data show, Smart Board, software, etc.)	Smart board, Data show, Black board, Internet
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Thermometers, Calorimeter and Hotplates

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods	
Effectiveness of Teaching and Assessment	Student	Likert-type Survey (CES) Indirect	
Extent of achievement of course learning outcomes	Instructor & Course coordinator	Class room evaluation (direct & indirect)	
Quality of learning resources	Program coordinator	<u>Indirect</u>	
Exam Quality assessment	Assessment committee	<u>Indirect</u>	
<i>Effectiveness of Teaching and Assessment</i>	Student	Likert-type Survey (CES) <u>Indirect</u>	

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Chemistry Department Council	
Reference No.	42 / 35 /102 112	
Date	17 /09 /1442 Corresponding to 28 / 04 /2021	

Laboratory equipment's and chemicals for

Course Name: Thermodynamic Chemistry
Code: - 241 CHEM-3

No.	Experiment Titles	Equipment, Chemicals and Tools.	No of weeks for experiment
	Lab Safety		One week
1	The Heat Capacity of the Calorimeter.	 Styrofoam cups Ice 100 mL graduated cylinder Cardboard lid w/ hole DI water Burner or hot plate Thermometer (-10 to 110 °C) 150 mL Beaker Watch or Clock Thermometer clamp 250 mL Beaker Centigram balance 	One week
2	Heat of Fusion of ICE.		One week
3	Specific Heat Capacity of an Unknown Metal.	 Styrofoam cups Ice 100 mL graduated cylinder Cardboard lid w/ hole DI water Burner or hot plate Thermometer (-10 to 110 °C) 150 mL Beaker Watch or Clock Thermometer clamp 250 mL Beaker Centigram balance metal sample (i.e.: Iron, Copper, Zinc, Aluminum,) 	One week
4	Heat of Solution of a Salt. (exo- and endo-) thermic dissolution.	 Styrofoam cup Balance Thermometer 100 mL graduated cylinder Anhydrous Sodium acetate, Ammonium nitrate, NH4NO3 	One week
5	Heat of Neutralization.	 Styrofoam cups Ice 100 mL graduated cylinder Cardboard lid w/ hole DI water Burner or hot plate Thermometer (-10 to 110 °C) 	One week

14

		 150 mL Beaker Watch or Clock Thermometer clamp 250 mL Beaker centigram balance NaOH, HCl and CH3COOH 	
6	Heat of Precipitation.	 Foam cup Thermometer Silver nitrate solution Sodium chloride solution 	One week
7	Heats of Reaction – Hess's Law.	 Styrofoam cup Balance Thermometer 100 mL graduated cylinder sodium hydroxide, NaOH 1M sodium hydroxide 1M Hydrochloric acid 0.5M Hydrochloric acid Distilled water 	One week
8	The Thermodynamics of Solubility.	 Solid KNO₃ Boiling water bath Graduated cylinders one 50 mL graduated cylinder with the plastic base removed one 25 mL graduated cylinder one 10 mL graduated cylinder Thermometer or temperature measuring probe Large test tube 	One week
9	Spontaneity of Reaction.	 Solid KNO₃ Foam cup Graduated cylinders Thermometer or temperature measuring probe 	One week
10	Determination of Critical Solution Temperature (CST)	 Test tubes, boiling tube as air jacket, thermometer (graduated to 0.1°C), stirrer, beakers, phenol, water sodium chloride 1N, Hot plate. 	One week
11	Phase diagram of 3 Component systems	 Test tubes, thermometer (graduated to 0.1°C), stirrer, beakers, Ethanol / Toluene / Water 	One week

