

Course Specifications

Course Title:	Aliphatic Organic Chemistry
Course Code:	CHEM 231
Program:	Bachelor in Chemistry
Department:	Chemistry
College:	Science
Institution:	Jazan University (JU)

Table of Contents

A. Course Identification3	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes4	
1. Course Description	4
2. Course Main Objective	5
3. Course Learning Outcomes	5
C. Course Content5	
D. Teaching and Assessment6	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	6
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support6	
F. Learning Resources and Facilities7	
1.Learning Resources	7
2. Facilities Required	7
G. Course Quality Evaluation7	
H. Specification Approval Data8	

A. Course Identification

1. Credit hours:	3hrs	Workload: 166.2	ECTS: 5.9	
2. Course type				
a. University	College	Department 🗸	Others	
b. Req	uired 🗸 Elec	tive		
3. Level/year at w	hich this course is	offered: Level 3 / year	2	
4. Pre-requisites f	or this course (if an	ny):		
		None		
5. Co-requisites fo	or this course (if an	y) :		
		None		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	27	90 %
2	Blended		
3	E-learning	3	10%
4	Distance learning		
5	Other (Lab)	30	100%

7. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	30
3	Tutorial	
4	Others (specify)	
	Total	60

B. Course Objectives and Learning Outcomes

1. Course Description

Course Title	Course Number		ntact ours	Credit unit	Year	Level	Prerequisite
		Lect.	Prac.	(CU)			
Aliphatic Organic Chemistry	CHEM 231	2	2	3	2	3	

Course objectives: They are to identify the following.

- Identifying and analyzing the structure of organic compounds by recognizing main functional groups, naming the compounds using the I.U.P.A.C. system, and predicting their properties using the type of bonding, hybridization state, intermolecular forces, and stereochemistry.
- Describing the reactions: nucleophilic substitution, elimination, and electrophilic addition, and apply this knowledge to predict the major product in organic reactions, such as those involving hydrocarbons,
- alkyl halides, and alkenes.
- analyzing the nature of a reagent: as a nucleophile, or electrophile and use this knowledge to propose the synthesis of organic compounds, such as a hydrocarbon, alkyl halides, alcohols, or alkenes.
- demonstrate proficiency in organic laboratory skills as they pertain to: chemical information, safe handling, use, and disposal of organic compounds; identify different unknown organic compounds and use of instrumentation, and writing laboratory reports following current scientific journal styles.

Syllabus: A-Theoretical contents

Principles of organic chemistry and its importance – molecular structure and properties of organic compounds – functional groups in organic compounds – principle organic reactions – studying different classes of aliphatic organic compounds including; nomenclature, chemical structure, physical properties, methods of preparation, chemical reactions and common uses of: saturated and unsaturated aliphatic compounds

Syllabus: B-Practical contents

Basic knowledge concerning general Safety Rules, Lab Equipment, Basic Laboratory Techniques, Measuring Volume and melting point, Purification of Organic Compounds, and sublimation. Finally, Identification of an unknown liquid and solid organic compounds.

*See attachment

2. Course Main Objective

This course aims to give students the basic knowledge concerning saturated and unsaturated aliphatic organic compounds, , their nomenclature, methods of preparation and their most important chemical reactions.

3. Course Learning Outcomes

	CLOs	Aligned
	CLOS	PLOs
1	Knowledge and Understanding	
	Upon completion of this course student will be able to	
1.1	Demonstrate a broad knowledge and understanding in the hybridization,	K1
	bonding in organic compounds, the nomenclature of organic compounds,	
	organic reactions, isomerism of organic compounds, reactions, and	
	preparations of alkane, alkene, alkyne, and aromatics. (I)	
1.2	Describe the reactions: nucleophilic substitution, elimination, and	K2
	electrophilic addition, and apply this knowledge to predict the major product	
	in organic reactions, such as those involving hydrocarbons, alkyl halides,	
	alkenes, alkynes, and aromatic. (I)	
2	Skills:	
	Upon completion of this course student will be able to	
2.1	perform experiments for the investigation and identification of unknown solid	S 1
	organic compounds, and write reports about It. (I)	
2.2	analyze the nature of a reagent: as a nucleophile or electrophile and use this	S2
	knowledge to propose the synthesis of organic compounds, and draw their	
	structure, and differentiate between them. (I)	
2.3	Examine and follow proper procedures and regulations for safe handling, use,	S 3
	and disposal of chemicals (I)	
3	Values:	
	Upon completion of this course student will be able to	
3.1	Work as a group leader in cooperation with other colleagues (I)	V1

C. Course Content

No	List of Topics		
1.	Introduction to Organic Chemistry	1	
2.	Structure, chemical bonding in organic compounds, and formal charges	3	
3.	Isomerism, types of structural isomerism and types of stereoisomerism.	2	
4.	Functional groups and IR	2+ Quiz	
5.	Organic reactions and Acid-Base reactions	4	
6.	Nomenclature of Alkanes, Alkene, and Alkynes and their cyclic forms.	4	
7.	Alkanes, preparation, reactions, octane number of fuel and their application		
8.	8. Alkenes and alkynes, preparation, reactions and their application		
9.	Aromatic compounds, aromaticity, and Nomenclature	3+Quiz	
10.	Electrophilic aromatic substitution for benzene, monosubstituted, disubstituted, and poly-substituted aromatics	3	
11.	Identification of an unknown liquid and solid organic compounds (LAB)	30	
	Total	60	

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods	
1.0	Knowledge and Understanding Upon completion of this course student will be able to	0		
1.1	Demonstrate a broad knowledge and understanding in the hybridization, bonding in organic compounds, the nomenclature of organic compounds, organic reactions, isomerism of organic compounds, reactions, and preparations of alkane, alkene, alkyne, and aromatics. (I)	Lecture	MCQ in Final exam	
1.2	describe Chemical phenomena using organic chemical principles and understanding the reactions of the organic Compounds. (I)	Lecture	Embedded Q Final exam	
2.0	Skills Upon completion of this course student will be able to			
2.1	perform experiments for the investigation and identification of unknown solid organic compounds, and write reports about It. (I)	Lab. Work	Lab. report	
2.2	demonstrate ability in critical thinking for the nomenclature and draw the structure of organic compounds and differentiate between them. (I)	Lecture	Embedded Q Final exam	
2.3	Examine and follow proper procedures and regulations for safe handling, use, and disposal of chemicals (I)	Group work Lab. Work	Oral Exam MCQ in safety	
3.0	Values Upon completion of this course student will be able to			
3.1	Work as a group leader in cooperation with other colleagues (I)	Lab Group work	Oral Exam	

2. Assessment Tasks for Students

#	Assessment task*		Week Due	Percentage of Total Assessment Score
1	Homework 1		3	2.5 (2.5%)
2	Group work re	ubric	8	0 (0%)
3	Quiz in Safety		9	0 (0%)
4	Mid-term exam		10	15 (15%)
5	Homework 2		11	2.5 (2.5%)
6	Practical	Sheet	1.4	30 (30%)
	Practical	Final practical exam	14	20 30 (30%)
8	8 Final Exam		16 50 (50%)	
	Final			100

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for the availability of faculty and teaching staff for individual student consultations and academic advice:

- The instructor will be available for academic counseling on daily basis for 4h/day during office hours.
- The office hours are listed in the instructor time table and delivered to the students in the first lecture each semester.
- The instructor is available in the WhatsApp group and BB with the students.
- E-mail and Telephone number are delivered to the students for any help throughout the semester.

F. Learning Resources and Facilities

1.Learning Resources

1.Learning Resource			
Required Textbooks	Organic Chemistry (tenth edition) Written by T. W. Graham Solomons and Craig B. Fryhle http://chemistry.com.pk/books Organic Chemistry, 9e Written by Jr. Leroy G. Wade, Jan William Simek, et al		
Essential References Materials			
Electronic Materials	 https://www.khanacademy.org/science/organic-chemistry https://www.organic-chemistry.org/ https://en.wikipedia.org/wiki/Organic_chemistry https://www.masterorganicchemistry.com/organic-1/ 		
Other Learning Materials	 https://www.youtube.com/watch?v=cAxJw_W05ZY https://www.chemguide.co.uk/orgmenu.html https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/intro1. htm 		

2. Facilities Required

<u>. </u>	
Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	1 Lecture room(s) for groups of 50 students
Technology Resources (AV, data show, Smart Board, software, etc.)	Smartboard, Data show, Blackboard, Zoom, and internet
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements, or attach a list)	Glassware, chemicals, hotplates, water bathes, flam, electrical balance, UV lamb, and IR.

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods		
Effectiveness of Teaching and Assessment	Students	Likert-type Survey (CES) <u>Indirect</u>		
The extent of achievement of course learning outcomes	Instructor & Course coordinator	Classroom evaluation (direct & indirect)		
Quality of learning resources		<u>Indirect</u>		
Exam Quality assessment		<u> Indirect</u>		

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Chemistry Department Council	
Reference No.	42 / 35 /102 112	
Date	17 /09 /1442 Corresponding to 28 / 04 /2021	

Laboratory Experiments

While specific laboratory experiments vary depending on the instructor and the semester, the following list is representative of the experiments that are used:

	Content	Page	Week	Notes
1.	General Safety Rules, Lab Equipment, and Basic	4-11	Week 1	
	Laboratory techniques.			
2.	Measuring volume and melting point		Week 2	
3.	Purification of Organic Compounds and sublimation		Week 3	
4.	Simple Liquid Organic Compounds, Identification of	25-35	Week 4	
	hydrocarbons and alcohols			
5.	Identification of Phenols, Aldehydes, and Ketones	45-50	Week 5	
6.	Identification of Carboxylic acid and amines	68-75	Week 6	
7.	Scheme of Simple Liquid Organic Compounds	78	Week 7	
8.	Revision	78	Week8	
9.	Exam of Simple Liquid Organic Compounds		Week 9	
10.	Simple Solid Organic Compounds and identifications	89-94	Week 10	
	of carbohydrates			
11.	Identification of Carboxylic acid, salts of carboxylic	95-102	Week 11	
	acids, and urea			
12.	Identification of Aniline salts	108-112	Week 12	
13.	Scheme of Simple Solid Organic Compounds	113	Week 13	
14.	Revision	115	Week 14	
15.	Final Exam		Week 15	