Course Name	Theory of Compilers	Course Code	433 COMP-3						
Credit Hour	3	Contact Hours	Lecture	Lab	Total				
	3		2	2	4				
Track	University Requirement College Requirement Program Requirement Elective								
Offered in	BS- Computer Science BS- Information System BS- Computer & Network Engineering								
Level	10	Prerequisites	None						
Course Description:									

This course presents an introduction to compilers phases –analysis, synthesis, lexical analysis, regular expressions, finite automata NFA and DFA. Syntax Analysis, context-free grammar, ambiguity, top-down parsing - recursive descent and LL(K), bottom-up parsing, shift reduce parsing, introduction to LR parser, semantic analysis, syntax directed translation, intermediate code generator-three address code, storage organization, heap management, code generation, and code optimization.

Course Objectives:

These are the objectives of the course:

- 1. Enrich the knowledge in various phases of compiler and explore the understanding of how compilers translate source code to machine executable form.
- 2. Convert regular expression to its equivalent finite state machine to accept a specified language.
- 3. Familiarize students with parsing and syntax-directed translation techniques.
- 4. Use different compiler optimization schemes in addition to efficient register allocation.
- 5. Provide practical programming skills necessary for constructing a compiler.

Grading	Assignment 1	10 %	Exam-1	10%	Exam-2	10%
	✓Assignment 2 / Case studies	10%	⊠ Lab Exam	20%	⊠ Final	40%

Textbook:

Required: Aho, Lam, Sethi, and Ullman, "Compilers: Principles, Techniques, & Tools", Second Edition, Pearson 2007. ISBN-10:0321486811.

Reference Books:

- 1. Modern Compiler Implementation in Java, Second Edition by Andrew W. Appel and Jens Palsberg ISBN:052182060x Cambridge University Press © 2002
- 2. Engineering a Compiler, Second Edition --February 21, 2011, by Keith Cooper, Linda Torczon ISBN-978-0120884780 ISBN-10: 012088478X.
- 3. http://java.sun.com/docs/books/tutorial/