Course Name	Microprocessor & Assembly Language	Course Code	CNET-315						
Credit	3	Contact Hours	Theory	Lab	Total				
Hours		Contact Hours	2	2	4				
Offered as	University Requirement College Requirement Program Requirement Elective								
Offered in	In BS - Computer Science BS - Information Systems BS - Computer & Network Engineering								
Level	7 th Level	Pre-requisite	CNET-2	225 (Dig	gital Logic)				

Course Description:

The purpose of this course is to teach students the fundamentals of microprocessors and microcontrollers. The student will be able to incorporate these concepts into their electronic designs for other courses where control can be achieved via a microprocessor(MP)/microcontroller(MC) implementation. Topics include microcomputer architecture, microprocessor evolutions, 8086 microprocessor architecture, signals and pin configuration. 8086 addressing modes, instruction set, assembly language programming and example programs. 8086 Interrupts handling, types of interrupts and 8259 Priority Interrupt Controller. Introduction to microcontroller 8051, comparison of microcontroller and microprocessor.

Laboratory exercises will be practiced using EMU8086 emulator which is based on 8086microprocessor.

Course objectives:

This course will develop the students' ability to learn:

- Introduce the concepts of microprocessors based systems.
- Compare the devices required for microprocessor based systems
- Describe the microcomputer architecture and its basic functionalities.
- Design I/O and memory addressing scheme by calculating the physical addresses.
- Demonstrate the assembly language programming concepts

Grading	⊠Exam 1	10%	⊠Exam 2	10%	⊠Assignment	10%
	⊠Final	40%	⊠Lab	20%	☐Mini Project	
Tata McG 2. Douglas F	K. M. Bhurchandi, "Advraw Hill. Hall, "Microprocessors and Graw-Hill. 1999, Second E	d Interfac	•	•		
Reference B	· · · · · · · · · · · · · · · · · · ·	dition.				
 John Yu-C 	Uffenback, "8086/8088 I Cheng Liu, Glenn A. Gibs gn", PHI. 1986, Second E	on, "The			,	and

Track Leader

Course Coordinator

CEO

HOD