Course Name	Advanced Operating Systems	Course Code	332 COMP-3						
Credit Hours	2	Contact Hours	Theory	Lab	Total				
	3	Contact Hours	2	2	4				
Offered as	University Requirement College Requirement Program Requirement Elective								
Offered in	BS - Computer Science BS - Information Systems BS - Computer & Network Engineering								
Level	8 th Level	Prerequisite 231-0		COMP-3					

Course Description:

This course provides the detailed description of distributed system concepts and its applications. It includes synchronization, concurrency and distributed scheduling algorithms. It also covers the fundamental concepts, structure, characteristics, scheduling algorithms of multi-processor & real time operating system and various aspects and mechanisms for operating system security.

Course objectives:

- Describe the fundamentals of distributed system, multiprocessor system, real-time systems and trends in Operating system design.
- Demonstrate the application and implementation of various multiprocessor and Real-time scheduling algorithms in solving scheduling problems.
- Show the applications and implementation of various mutual exclusion algorithms for distributed systems.
- Explain the various aspects of operating system security and mechanisms to reinforce it.

Grading	⊠ Exam 1	10%	Exam 2	10%	Assignment(s)	20%
	⊠ Final Exam	40%	⊠ Lab	20%	☐ Mini Project	0%

Text Book:

- 1. Distributed Systems Principles and Paradigms, Andrew Tanenbaum and Maarten van Steen, 2016, Pearson, 2nd edition, ISBN-13: 978-1530281756
- 2. Principles of Operating Systems, Naresh Chauhan, 2014, Oxford University Press, 1st edition, ISBN-13: 978-0198082873

Reference Book:

- 1. Operating Systems: Internals and Design Principles, William Stallings, 2014, Pearson, 8th edition, ISBN-13: 9780133805918.
- 2.Modern Operating Systems, Andrew S. Tanenbaum, 2014, Pearson, 4th edition, ISBN-13: 9780133591620.