Kingdom of Saudi Arabia Ministry of Education Jazan University Faculty of Science Mathematics Department

المملكة العربية السعودية وزارة التعليم جامعة جازان كلية العلوم قسم الرياضيات

Course Description

Calculus (III) - Math 319

SEMESTER:	First semester (2020/2021)
COLLEGE:	Engineering College
COORDINATOR:	Dr. Mahmoud Ali Bakhit
OFFICE:	24
OFFICE HOURS:	8-11 Mun & Tue & Thu and by appointment
E-MAIL:	mabakhit@jazanu.edu.sa mabakhit2008@yahoo.com
Credit:	3 hures
TEXTBOOK:	J. Stewart, Calculus, Early Transcendentals 10Edition

Course Description in details:

Chapter	Topic/Activity	Weeks
APPENDICES	Table of basic derivatives	1st Week 30/8-3/9/2020
	Table of basic integrals	
	Basic Trigonometric Identities	
	Basic Properties of Logarithms	
Chapter 1:	Polar Coordinates	2nd Week
Polar Coordinates	Polar Curves, Areas in polar coordinates	6-10/9/2020
	Length in polar coordinates	
	3Dim coordinate systems	3rd Week
	Distance between two points and Sphere,	13-17/9/2020
	Vectors	
Chapter 2:	Equations of lines	4th Week
Vectors and Geometry of	Equations of planes	20-24/9/2020
Space Section	Functions of two or more variables	5th Week
	Limits	20/0 4/40 /2020
	Continuity	28/9-1/10 /2020
Chapter 3:	Definition of partial derivatives,	6rd Week
Partial Derivatives:	Higher Derivatives,	4-8/10/2020
	Clairaut's Theorem, Laplace equation and wave	4 0/10/2020
	equation	
	Tangent Planes and Linear Approximations	7th Week
	Review of Ch 3- Part I	11-15/10/2020 Maid T1
	Mid Term Exam 1	_ Ividiu 11
	The Chain rule	8th Week
	Implicit Differentiation	18-22/10/2020
	Directional Derivatives and the Gradient vector	
	Maxima and Minima: Second Derivatives Test of	9th Week
	Review of Ch 3- Part II	28/10-5/11 /2020

Chapter 4: Multiple Integrals	Iterated integrals	10th Week 8-12/11 /2020
	Double integrals over general regions Double integrals in polar coordinates	11th Week
	Triple integrals Review of Ch 4- Part I	15-19/11/2020 12th Week
	Mid Term Exam 2, in 27/3/2019	22-25/11 /2020 Maid T2
	From 3 to 5.30 PM Triple integral over a general bounded region	13th Week
	Triple integrals in cylindrical coordinates	29/11-3/12 /2020
	Triple integrals in spherical coordinates Review of Ch 4- Part II	14th Week 6-10/12 /2020
	Final Examination	15th Week 26-30/4 /2020

Mid – Term Exams: The first mid-term exam will be given during the 7th week.

(Chapter 1 and Chapter 2)

The second mid-term exam will be given during the 12th week.

• (Chapter 3 and Chapter 4 up to Double integrals in polar coordinates)

Course Description:

- Polar coordinates, polar curves, area in polar coordinates.
- Vectors, lines, planes and surfaces.
- Functions of two and three variables, limits and continuity.
- Partial derivatives, directional derivatives.
- Extrema of functions of two variables.
- Cylindrical and spherical coordinates.
- Double integrals, double integrals in polar coordinates.
- Triple integrals, triple integrals in cylindrical and spherical coordinates.

Learning Outcome:

After finishing the course, the student is expected to be familiar with the followings:

- Show the polar coordinates, polar curves and calculate the area in polar coordinates.
- Show the vectors, lines, planes and surfaces.
- Show the Partial derivatives, directional derivatives of functions of two and three variables and extrema of functions of two variables.
- Understand the basic rules of Double integrals, double integrals in polar coordinates, triple integrals, triple integrals in cylindrical and spherical coordinates.
- Develop the student's logical thinking and providing students with skills necessary to solve problems.

Course Assessments:

- First Exam 20%
- Second Exam 20%
- Quizzes and homework 10%
- Final Exam 50%

Methods of teaching the course:

- Academic lectures (Online until further notice)
- Blackboard (BB)
- Homework
- Assign students to prepare scientific projects
- Scientific discussions
- The use of mini-model of education

Scientific References:

- Calculus, J. Stewart, 5 Edition, Brooks/ Cle Publishing Company, (2003).
- Calculus, R. E. Larson, R. P. Hostetler, and B. H. Edwards, 7 Edition, Houghton Mifflin Company, (2002)
- Calculus, G. B. Thomas, Early Transcendentals, 11 Edition, Addition-Wesley, New York (2006)
- Calculus, E. Swokowski, M. Olinic, and D. Pence, 6 Edition, PWS Publishing Company, (1994)
- Calculus, H. Anton, I. Bivens and S. Davis, Early Transcendentals 10th Edition International Student Version (2012).