# Kingdom of Saudi Arabia Ministry of Education Jazan University Faculty of Science Mathematics Department



المملكة العربية السعودية وزارة التعليم جامعــة جـــازان كلية العلوم قسم الرياضيات

### (College of Computer Science)

Course Title: Discrete Mathematics (Math 107).

Second Semester 1441/1442 h (2020-2021)

Coordinator: Dr. Azeem Haider

Office: Mathematics Department, Room No.- 2509

Email: azeemhaider@gmail.com, aahaider@jazanu.edu.sa

Prerequisite: Math 105.

**Credit:** 3 hours

### **Textbook:**

• Discrete Mathematics and its applications, K.H. Rosen, McGraw-Hill, 6<sup>th</sup> edition (2007)

## **Scientific References:**

- Discrete and Combinatorial Mathematics: An applied introduction, R.P. Grimaldi, Addison Wesley, 5<sup>th</sup> edition (2004)
- Donald Knuth et. Al, Concrete Mathematics: A foundation for computer science, Addison Wesley, 2<sup>nd</sup> edition (1994)
- John Dossey et al, Discrete Mathematics and its applications, Addison Wesley 5<sup>th</sup> edition (2006)

# **Course Description:**

- Mathematical logic: propositional logic and propositional equivalence
- **Functions:** function of integers
- **Basics of counting:** permutation and combinations, binomial coefficients, generalized permutation and combinations
- Advanced counting techniques: recurrence relation, solving linear recurrence relation and generating functions
- Graphs: digraphs and undirected graphs, types of graphs and different properties
- Trees: types of trees and related results
- Boolean algebra: Boolean functions, representing Boolean functions and logic gates

### **Learning Outcome:**

After finishing the course, the student is expected to be familiar with the followings:

- Mathematical logic
- Permutation and combination
- Generating functions and their applications in counting
- Graphs and its applications
- Trees method and its uses
- Boolean Algebras

### **Course Assessments:**

- First Exam 20%
- Second Exam 20%
- Quizzes and homework 10%
- Final Exam 50%

### **Methods of teaching the course:**

- Academic lectures
- Blackboard lectures
- Homework

### **Course Description in details:**

| <u>Chapter title</u>                    | Topic/Activity                                                                                                                                                                                                        | <u>Due to</u>                                     |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Ch 1: The Foundations: Logic and proofs | 1.1 Propositional Logic Definitions, examples, truth tables of compound propositions, tautology and contradiction.  1.2 Propositional Equivalence Propositional equivalence, logical equivalence and De Morgan's Law. | 1 <sup>st</sup> Week                              |
| Ch 2: Functions                         | <b>2.1 Functions</b> Some important functions: floor and ceiling functions and its properties.                                                                                                                        | 3 <sup>rd</sup> Week                              |
| Ch 3: Boolean algebra                   | 3. 1 Boolean function Definition, Boolean expression and Boolean functions, identities of Boolean algebra, duality 3.2 Representing Boolean functions Sum of products expansions.                                     | 4 <sup>th</sup> Week<br>&<br>5 <sup>th</sup> Week |
| Ch. 4: Logic gates                      | <b>4.1 Logic gates</b> Definition and combination of gates.                                                                                                                                                           |                                                   |

|                    | 5.1 Basics of counting                                       |                           |
|--------------------|--------------------------------------------------------------|---------------------------|
|                    | Basic counting principles and examples                       | 6 <sup>th</sup> Week      |
| Ch 5: Counting     | 5.3 Permutation and combinations                             |                           |
| Principle          | Permutations, examples, combinations and examples            |                           |
|                    | 5.4 Binomial coefficients                                    |                           |
|                    | The binomial theorem, Pascal's identity and Triangle         | &<br>7 <sup>th</sup> Week |
|                    | 5.5 Generalized permutations an combinations                 |                           |
|                    | permutations with repetitions, combinations with             |                           |
|                    | repetitions, permutations with indistinguishable objects     |                           |
|                    | Supplementary exercises.                                     |                           |
|                    | 6.1 Recurrence relation                                      |                           |
|                    | Recurrence relations definitions and some examples           |                           |
| Ch 6: Recurrence   | 6.2 Solving linear recurrence relations                      |                           |
| Relation           | Solving linear homogeneous recurrence relation with          | 8 <sup>th</sup> Week      |
|                    | constant coefficients.                                       | & 9 <sup>th</sup> Week    |
|                    | Generating Functions                                         | 9 Week                    |
| Ch 7: Generating   | Definition, some facts about power series, some useful       |                           |
| Functions          | generating functions.                                        |                           |
|                    | 8.1 Graph and graph models                                   |                           |
|                    | Definition of graphs (directed and undirected) and example   | 10 <sup>th</sup> Week     |
| Ch 8: Graph Theory | (influence graph)                                            | - &                       |
|                    | 8.2 Graphs terminology and special types of graph            | 11 <sup>th</sup> Week     |
|                    | Basic terminology, degree of a vertex, isolated and pendant, |                           |
|                    | in-degree and out degree.                                    |                           |
|                    | 8.3 Representing graphs and graph isomorphism                |                           |
|                    | Representing graph, adjacency matrices, and Incidence        | 12 <sup>th</sup> week     |
|                    | matrices.                                                    | _                         |
| Ch O. Tura         | 9.1 Introduction to Trees                                    | Week                      |
| Ch 9: Trees        | Definition, examples of trees and graphs that are not trees, | -300                      |
|                    | rooted tree, binary tree and spanning trees.                 |                           |

Mid –Term Exams: The first mid-term exam will be given during the  $6^{th}$  or  $7^{th}$  week. The second mid-term exam will be given during the  $11^{th}$  or  $12^{th}$  week.